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P U B L I C  H E A L T H

Exploring spatial heterogeneity in synergistic effects of 
compound climate hazards: Extreme heat and wildfire 
smoke on cardiorespiratory hospitalizations 
in California
Chen Chen1*, Lara Schwarz2,3, Noam Rosenthal4, Miriam E. Marlier4, Tarik Benmarhnia1

Extreme heat and wildfire smoke events are increasingly co- occurring in the context of climate change, especially 
in California. Extreme heat and wildfire smoke may have synergistic effects on population health that vary over 
space. We leveraged high- resolution satellite and monitoring data to quantify spatially varying compound expo-
sures to extreme heat and wildfire smoke in California (2006–2019) at ZIP Code Tabulation Area (ZCTA) level. We 
found synergistic effects between extreme heat and wildfire smoke on daily cardiorespiratory hospitalizations at 
the state level. We also found spatial heterogeneity in such synergistic effects across ZCTAs. Communities with 
lower education attainment, lower health insurance coverage, lower income, lower proportion of automobile 
ownership, lower tree canopy coverage, higher population density, and higher proportions of racial/ethnic mi-
norities experienced higher synergistic effects. This study highlights the need to incorporate compound hazards 
and environmental justice considerations into evidence- based policy development to protect populations from 
increasingly prevalent compound hazards.

INTRODUCTION
Global exposure to extreme heat and wildfires has grown in recent 
years and is expected to continue intensifying in the context of 
climate change (1–7). A small increase in global temperature can 
result in extreme local temperature (8, 9). Hotter temperatures 
from a warming climate coupled with lower moisture from chang-
es in precipitation regimes also produce drier conditions, intensi-
fying the risk for larger wildfires (9, 10). Wildfires and heat waves 
have increased in length, intensity, and size under climate change, 
particularly on the United States West Coast (11–15), with record- 
breaking events occurring frequently in recent years (2). As a re-
sult, populations have been increasingly exposed to co- occurring 
extreme heat and wildfire smoke (16).

Aside from increases in co- occurrence due to climate change, ex-
posure to extreme heat and wildfire smoke both increase the risk of 
adverse health outcomes, including cardiovascular and respiratory 
complications. Extreme heat can lead to dehydration and vasodila-
tion of blood vessels, which can produce heat stress and pressure the 
thermoregulatory process, increasing pulmonary and cardiac strain 
(17). It has been estimated that 0.36 million deaths globally were 
attributed to high temperatures (i.e., temperature higher than the 
local temperature associated with the lowest mortality rate) in 2019 
(18). The inhalation of particulate matter from wildfire smoke can 
also produce oxidative stress and inflammation, which triggers cel-
lular damage and increases the risk of cardiopulmonary disease 
(19). Global deaths attributable to fine particulate matter (PM2.5) 
from smoke are estimated to be 340,000 to 680,000 per year (20, 21). 
Because of the regularity of these concurrent exposures and their 
similar physiological impacts, these events may act synergistically to 

further aggravate health effects. Communities may be overburdened 
by these concomitant events, and developing adaptation strategies 
based on exposure information from both extreme heat and wildfire 
smoke can protect against these dual risks. However, most efforts to 
mitigate the adverse health impacts of extreme heat and wildfire 
smoke did not consider this potential synergistic effect. For exam-
ple, existing early warning systems for wildfire smoke and extreme 
heat are issued separately by different government agencies in Cali-
fornia. The local National Weather Service offices issue heat adviso-
ries in advance of forecast periods of high heat, while the local air 
quality management district sends out air quality warnings to pro-
mote behavior changes based on Air Quality Index created by the 
U.S. Environmental Protection Agency (EPA). If a synergistic effect 
existed between wildfire smoke and extreme heat, issuing a joint 
warning earlier considering the compound hazards would be bene-
ficial. Besides, existing evaluation of climate- related health impacts 
generally estimates the influence of each climate hazard separately 
and ignores potential synergistic effects between climate hazards 
(22), which might underestimate the actual health burden and jeop-
ardize the effectiveness of climate change adaptation plans.

Our understanding of the potential synergistic effects of wildfire 
smoke and extreme heat is limited. Previous studies have focused on 
compounded effects of extreme heat and ambient air pollution, while 
none directly explored compounded effects of extreme heat and 
wildfire smoke. Systematic reviews found evidence of synergistic ef-
fects for heat with PM2.5 on all- cause mortality and respiratory and 
cardiovascular morbidity (22) and weak evidence of effect modifica-
tion by PM2.5 on heat- mortality association (23). However, com-
pared to ambient PM2.5 from other sources, PM2.5 during wildfire 
events were more intense—often an order of magnitude larger than 
ambient PM2.5 levels from other sources—and could produce dis-
tinct physiological responses and adaptive behaviors with or without 
concurrent extreme heat event (24). Previous epidemiological study 
also found higher impact on respiratory hospitalizations from expo-
sure to wildfire PM2.5 than exposure to ambient PM2.5 from other 
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sources (25). These differences warrant independent study of the 
synergistic effects between wildfire smoke and extreme heat.

Such compounded impacts may also have important environmen-
tal justice implications since community factors may modulate the 
synergistic effect of co- occurring climate hazards. Previous studies 
found spatial heterogeneity in health impacts associated with extreme 
heat events (26–28), wildfire smoke events (29, 30), and effect 
modification of air pollution on health effects of extreme heat (31). 
Underprivileged communities have increased vulnerability to wildfire 
smoke (32, 33) and extreme heat (23). We use the term vulnerability 
as defined by the National Institute of Environmental Health Sciences 
report, and such vulnerability could originate from a combination of 
socioeconomic, environmental and personal factors (34). In other 
words, the vulnerability could be driven by both exposure disparity 
and differential response. For example, communities with lower so-
cioeconomic status might have lower financial capacity to guard 
themselves against climate hazards like wildfire smoke and extreme 
heat and thus experience higher exposures (33). Neighborhood- level 
risk factors such as crime, noise, and traffic can also lead to acute and 
chronic changes in the functioning of body systems and increase the 
effect of environmental exposures such as air pollution and heat in 
communities with lower socioeconomic status (35–38). Because of 
historical discriminative practices and structural racism, racially mar-
ginalized communities also have less adaptive capacity (e.g., lower 
housing quality and worse baseline health status) toward climate haz-
ards, experiencing a 50% higher vulnerability to wildfires (32) and 
greater impacts from extreme heat (23, 39). A recent review found 
strong evidence suggesting that climate change will likely dispropor-
tionately affect communities of color and exacerbate racial disparities 
in health (39). However, existing studies on synergistic health effects 
of air pollution and extreme heat usually estimate an overall measure 
at a regional or country level using time- series analysis or case- 
crossover design (22, 23, 31). No study has evaluated fine- scale spatial 
variability in the synergistic effects or explored what community- level 
sociodemographic characteristics are important to explain the differ-
ential synergistic effects. Identifying the local effects of these com-
pounded climate hazards can be used to inform appropriate measures 
that account for the specific vulnerability of the community to reduce 
related health burdens. By exploring what community- level sociode-
mographics are important in explaining spatial differences in syner-
gistic effects of two key climate hazards, we can highlight the need to 
incorporate environmental justice considerations into adaptation ef-
forts toward climate change and promote health equity and provide 
evidence to aid decisions like siting clean air and cooling centers and 
targeted educational campaign.

As a highly diverse state that is heavily affected by extreme heat 
and wildfire smoke, California is a unique context to investigate this 
potential synergistic effect and explore whether the synergistic effect 
varies by community characteristics. The racial/ethnic composition of 
California is highly diverse—according to the 2020 census, Hispanics 
make up the largest racial/ethnic group (39%), which is followed by 
white (35%), Asian American (15%), and Black (5%) (40). Income 
inequality is a major concern, and California has one of the largest 
income gaps in the country; 20% of the state’s net worth is concen-
trated in ZIP Code Tabulation Areas (ZCTAs) that are home to only 
2% of the population (41). Furthermore, projections show that Cali-
fornia will be one of the most climatologically risk- prone areas in the 
country in the next decades (42). Wildfires already account for 50% of 
total primary fine particulate matter emissions in California, and this 

percentage will only increase under climate change (1, 43). Extreme 
heat exposure is also expected to increase, and projections show that 
the frequency of extreme temperatures will increase by 10- fold in 
many California regions (44). Approximately 68% of the state of 
California was exposed to both extreme heat and wildfire smoke par-
ticulate matter concurrently during the 2020 wildfire season, and 
these co- exposures are expected to continue increasing under climate 
change (45, 46).

Here, we leveraged highly resolved satellite and monitoring en-
vironmental data to estimate compound exposures to extreme 
heat and wildfire smoke PM2.5 from 2006 to 2019 in California. We 
estimated the individual and joint effect of these hazards on car-
diorespiratory hospitalizations and evaluated whether synergistic 
effects exist in such compounded climate hazards. We estimated 
these effects for California overall and then used a spatiotemporal 
approach to explore heterogeneity in such synergistic effects at 
the ZCTA level. Last, we investigated the effect modification of the 
synergistic effects by community characteristics to highlight the 
environmental justice implications of these compounded impacts, 
which could support evidence- based mitigation and adaptation 
policy development.

RESULTS
We analyzed cardiorespiratory hospitalizations in the general popula-
tion among 995 California ZCTAs (66.8% of California population) 
with populations larger than 1000 that experienced at least 1 day of 
extreme heat alone, wildfire smoke alone, or compound exposure to 
both hazards. For our main analyses, we choose the 85th percentile of 
historical summer daily maximum heat index as the threshold for ex-
treme heat day and ≥15 μg/m3 wildfire- specific PM2.5 concentration 
as the threshold for wildfire smoke day a priori. These threshold val-
ues were adopted from health- based guidelines for daily PM2.5 used 
by the World Health Organization (WHO) and heat wave definition 
used by the U.S. EPA (47, 48).

From 2006 to 2019, we observed 206,302 (4.06% among all ZCTA- 
days) extreme heat alone ZCTA- days, 32,089 (0.63%) wildfire smoke 
alone ZCTA- days, and 5423 (0.11%) compound exposure ZCTA- days 
(Table 1). Although we included data for the entire year, most com-
pound exposure days occurred between June and November (99.9% of 
all compound exposure days) (fig. S1A and table S1). Years with >1 day 
of compound exposure per ZCTA are 2008 (2.14 days) and 2017 
(1.68 days) (fig. S1B and table S2). ZCTAs with higher numbers of 
compound exposure days were in the northern mountains and cen-
tral valley, likely driven by the higher occurrence of wildfires in sur-
rounding mountains (Fig. 1A). The northern mountain and central 
valley areas had more days with wildfire smoke alone during the study 
period than other regions (Fig. 1C). Since we defined extreme heat 
days using percentiles of historical summer daily maximum heat in-
dex from the year 1980 to the year 2005, the total number of days with 
extreme heat alone was different across ZCTAs and more days oc-
curred in the coastal region and the southern desert (Fig. 1B). This 
could be a result of rapidly increasing temperatures during recent de-
cades and consistently high temperatures coupled with a minimum 
cutoff value of 80°F and a maximum cutoff value of 105°F for the ex-
treme heat definition. The ZCTA- specific threshold values for ex-
treme heat were higher in the central valley and the southern desert 
(fig.  S2A). Across all years and ZCTAs in the study, we observed 
18,143,419 cardiorespiratory hospitalizations.
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We used relative excess risk due to interaction (RERI) to quantify 
the relative difference between the joint effect of two co- occurring 
hazards (extreme heat and wildfire smoke) and the sum of individual 
effects of the two hazards (49). When estimating statewide effect esti-
mates using a time- stratified case- crossover design that did not con-
sider spatial heterogeneity, we observed a RERI of 0.04 (95% CI, 0.01 
to 0.06) for same- day exposure and hospitalization, suggesting a posi-
tive synergistic effect on the additive scale (Fig. 2A and table S3). In 
other words, we found a higher health impact due to interactions of 
wildfire smoke and extreme heat than the sum of health impacts from 
the individual hazards separately. As more stringent definitions were 
used for either hazard, there were fewer exposed ZCTA- days for each 
exposed category (Table 1), and RERI point estimates became higher 
with wider confidence intervals (CIs) (Fig. 2A and table S3). RERIs 
for previous- day exposure and hospitalization (lag 1) were similar 
(Fig. 2A and table S3). Although the synergistic effect on the additive 
scale (difference in effect estimates) is more relevant to public health 
than the synergistic effect on the multiplicative scale (ratio in effect 
estimates), we estimated the latter as a sensitivity analysis and found a 
similar pattern (fig. S3 and table S3). Besides, we observed odds ratios 
(ORs) of 1.01 (95% CI, 1.00 to 1.01), 1.03 (95% CI, 1.02 to 1.03), and 
1.07 (95% CI, 1.05 to 1.09) for individual effects of extreme heat and 
wildfire smoke alone, and joint effect of combined exposure to both 
hazards, respectively (Fig. 2B and table S3). Similarly, ORs of indi-
vidual and joint effects increased with definition stringency for both 
same- day and lag- 1 metrics (Fig. 2B and table S3). ORs of previous- 
day exposure and hospitalization (lag 1) were similar for wildfire 
smoke and combined exposure but lower for extreme heat.

To allow the synergistic effect to vary across space, we used a 
within- community matched design (see details in Materials and 
Methods) to calculate ZCTA- specific rate ratios for individual and 
joint effects of extreme heat and wildfire smoke, as well as the corre-
sponding ZCTA- specific RERIs. The ORs estimated by case- crossover 
design are equivalent to incidence rate ratios estimated by within- 
community matched design assuming appropriate control for con-
founders like seasonality, and the corresponding RERIs are also 
comparable. We failed to estimate RERI in four ZCTAs because no 
hospitalization was observed in selected control days of these ZCTAs, 
which is expected given the small population (<3500). To account for 
spatial autocorrelation, we leveraged spatial information across the 

remaining 991 ZCTAs with a spatial Bayesian hierarchical model 
(BHM) and calculated the post- pooling ZCTA- specific RERIs and 
noise- to- signal ratios (Fig. 3), which were of similar patterns as the 
pre- pooling estimates (fig. S4A). The median ZCTA- specific RERIs 
after incorporating the spatial information were 0.11 [interquartile 
range (IQR), −0.14 to 0.35], indicating positive synergistic effects be-
tween wildfire smoke and extreme heat among most ZCTAs in our 
study. We also observed strong spatial heterogeneity in ZCTA- specific 
RERIs, with positive synergistic effects in the northern mountain, 
central valley, and large coastal metropolitan areas such as Los Ange-
les and the Bay Area, and antagonistic effects in the northern coast 
(Fig. 3).

To explore how community characteristics might explain the ob-
served heterogeneity in ZCTA- specific synergistic effects, we ran 
meta- regressions using 918 ZCTAs after removing ZCTAs with miss-
ing any community characteristics. Communities with lower syner-
gistic effects had higher education attainment, higher health insurance 
coverage, higher income, higher proportion of automobile ownership, 
higher tree canopy coverage, and higher proportion of white residents 
(Fig.  4). On the other hand, we observed higher synergistic effects 
among communities with higher population density, and higher pro-
portions of Black, Asian, Hispanic, American Indian or Alaska Na-
tive, and Native Hawaiian or Other Pacific Islander residents. Since air 
conditioning (AC) prevalence varies drastically across California due 
to the varied climate zones (fig. S5A), we evaluated the effect modifi-
cation of AC prevalence on synergistic effects by climate zone and 
found lower synergistic effects among communities with higher AC 
prevalence in 10 of 15 climate zones (not enough data for estimation 
in Brawley), with exceptions for Eureka, San Jose, Santa Maria, Fres-
no, and LA Civic Center (fig. S5B).

To assess the robustness of our conclusions, we conducted exten-
sive sensitivity analyses. First, we included all 1772 California ZCTAs 
in the statewide case- crossover analysis. The spatial distribution of 
compound exposure days is similar to the main analysis (fig. S6A), 
and so were the RERI estimates (table S3). Second, including non- 
wildfire smoke PM2.5 in the conditional logistic model of the state- 
level analyses did not change the results for RERI, effect of wildfire 
smoke alone, or joint effect of both climate hazards (fig. S7). The effect 
of extreme heat decreased slightly after accounting for non- wildfire 
smoke PM2.5, which might be due to the removal of the effect of 

Table 1. List of climate hazard definitions explored in state- level estimates and the corresponding number of exposed ZCTA- days among 995 ZCTAs in 
California, 2006–2019. the extreme heat threshold is based on the percentile of the historical summer (July and August, 1980–2005) daily maximum heat 
index value. the wildfire smoke threshold is based on wildfire- specific PM2.5 (μg/m3).

Definition
Extreme heat 

threshold
Wildfire smoke 

threshold
# of ZCTA- days with exposure (%)

Extreme heat alone Wildfire smoke alone Compound

eh85_WF0 85th >0 150,310 (2.95) 448,190 (8.81) 61,415 (1.21)

eh85_WF5 85th 5 194,161 (3.82) 116,128 (2.28) 17,564 (0.35)

eh85_WF15 85th 15 206,302 (4.06) 32,089 (0.63) 5,423 (0.11)

eh85_WF35 85th 35 210,174 (4.13) 11,266 (0.22) 1,551 (0.03)

eh95_WF0 95th >0 68,675 (1.35) 482,235 (9.48) 27,372 (0.54)

eh95_WF5 95th 5 88,258 (1.73) 125,903 (2.47) 7,789 (0.15)

eh95_WF15 95th 15 93,408 (1.84) 34,873 (0.69) 2,639 (0.05)

eh95_WF35 95th 35 95,272 (1.87) 12,042 (0.24) 775 (0.02)
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extreme heat mediated through non- wildfire smoke PM2.5 (50). 
Third, using three different control selection and estimation methods 
for the within- community matched designs to obtain ZCTA- specific 
estimates, we observed similar pre-  and post- pooling synergistic ef-
fect estimates in spatial patterns in all matched designs explored 
(figs. S4 and S8). Inferences for effect modification of synergistic ef-
fects by community characteristics were also similar (fig.  S9). Last, 
inferences remained the same for effect modification of synergistic 
effects by community characteristics under different analytical 
decisions: (i) using community characteristics based on averages of 

American Community Survey between 2011 and 2015, (ii) using De-
partment of Housing and Urban Development (HUD) crosswalk to 
convert census tract data to ZCTA level for community characteris-
tics, (iii) incorporating minimal prior knowledge into the spatial 
BHM, and (iv) ignoring potential spatial autocorrelation (fig. S10).

DISCUSSION
Using daily time- series dataset of compound exposures and car-
diorespiratory hospitalizations for 995 ZCTAs in California from 

Fig. 1. Spatial distribution of the total number of exposed days in 995 California ZCTAs from 2006 to 2019 under the main analysis definition for climate haz-
ards (85th percentile for extreme heat and 15 μg/m3 for wildfire PM2.5). (A) Compound exposure, (B) extreme heat alone, and (C) wildfire smoke alone. Gray color 
represents excluded ZCtA that has a population of ≤1000 or lacks any exposed day (extreme heat alone, wildfire smoke alone, or both).
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2006 to 2019, we found evidence of synergistic effects between ex-
treme heat and wildfire smoke at the state level. In other words, we 
observed a higher statewide joint effect when both hazards co- 
occur compared to the sum of individual effects of either hazard 
alone. Furthermore, using a within- community matched design 
and a spatial- temporal model, we also found that such synergistic 
effects vary spatially within California, with higher values in the 
northern mountains, central valley, and large coastal metropolitan 
areas. This spatial heterogeneity is correlated with socioeconomic 
and demographic characteristics; we observed higher synergistic 

effects in communities less affluent, more crowded, or with higher 
proportions of racial/ethnical minority residents. In 10 of 15 
California climate zones, AC prevalence was negatively associated with 
the synergistic effect. Our results are robust to various climate haz-
ard definitions and analytical methods. These results support the 
need to incorporate consideration of synergistic effects in evalua-
tion of health impacts and development of action plans and adap-
tation efforts. Our results could also aid decision- making for 
targeted efforts in communities with higher vulnerability toward 
the synergistic effects.

Fig. 2. State- level estimates by varying definitions of climate hazards. (A) Additive synergistic effect of wildfire smoke and extreme heat summarized in relative excess 
risk due to interaction (ReRi). (B) Associations between risk of cardiorespiratory hospitalization and wildfire smoke alone, extreme heat alone, and joint of both climate 
hazards. note: numerical results are available in table S3.
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Notably, we explicitly evaluated the synergistic effects of extreme 
heat and wildfire smoke events while exploring spatial heterogeneity 
and environmental justice implications of such impacts. Although we 
cannot directly compare with previous studies due to our unique fo-
cus on wildfire smoke instead of all- source PM2.5, our findings are 
consistent with previous studies qualitatively. A systematic review 
found evidence supporting the synergistic effects of heat and air 
pollutants (ozone and particulate matter) on all- cause mortality, 

non- accidental mortality, and morbidity outcomes (22). Synergistic 
effects between air pollution and heat were further supported by re-
cent studies, including a global study that found higher effects of ex-
treme heat on cardiorespiratory mortality in areas with higher levels 
of PM10, PM2.5, O3, and NO2 (31), and a California study that found 
positive RERI between extreme PM2.5 exposure and extreme heat for 
all- cause mortality (51).

Our finding that hospitalizations on days with concurrent ex-
treme heat and wildfire smoke events exceeded the combined hos-
pitalizations from days with either hazard alone motivates the 
consideration of compound climate hazards in public health plan-
ning. Although government agencies are becoming more aware of 
the increase in concurrent exposure to wildfire smoke and extreme 
heat, and some attempted to promote individual behavior changes 
specific to such compound exposure to mitigate adverse health im-
pacts (52, 53), a better understanding of the magnitude of the syn-
ergistic effect could promote more proactive top- down initiatives 
to protect public health. For example, the health impact of the 
compound exposure in days with wildfire PM2.5 above 15 μg/m3 
(WHO 24- hour standard) is close to the health impact of the wild-
fire smoke alone in days with wildfire PM2.5 above 35 μg/m3 
(U.S. EPA 24- hour standard). In other words, a joint early warning 
system using more stringent standards (e.g., 15 μg/m3 instead of 
35 μg/m3) to account for the synergistic effect is needed to achieve 
the same level of protection using less stringent standards in days 
with single hazard when compound exposures exist.

We found spatial heterogeneity in the synergistic effects of extreme 
heat and wildfire smoke events across California, with higher syner-
gistic effects in communities with lower education attainment, lower 
health insurance coverage, lower income, lower proportion of auto-
mobile ownership, lower tree canopy coverage, higher population 

Fig. 3. Spatial distribution of ZCTA- level pooled additive synergistic effects of wildfire smoke and extreme heat. (A) Pooled ReRi estimated using monthly weight-
ing method under the main definition for climate hazards. (B) Corresponding signal- to- noise ratio (SnR) for the pooled estimates, which represents the significance of the 
effect estimates, with absolute values smaller than 2 marked as missing (gray). note: Four ZCtAs were removed due to no hospitalization in control days and failure in the 
estimation of ZCtA- specific ReRi. Color categories in (A) are based on septiles of the ReRis with minor adjustment to ensure that zero serves as one of the boundary values.

Fig. 4. Effect modification of community characteristics on the additive syner-
gistic effect of wildfire smoke and extreme heat [increase in RERI per interquar-
tile range (IQR) increase in community characteristics]. ReRis were estimated 
using monthly weighting method under the main definition for climate hazards.
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density, and higher proportions of racial and ethnic minorities. This is 
consistent with vulnerable communities identified separately for 
wildfire and extreme heat in previous studies (23, 32, 35, 39). These 
results confirmed spatial variations in the effects of extreme weather 
events and shed light on how to understand such heterogeneity and 
develop targeted interventions toward vulnerable subpopulations. For 
example, we observed higher synergistic effects in communities with 
higher proportions of racial/ethnic minority groups, who may be 
more vulnerable to the impacts of such compounded impacts due to 
the intersection with other social determinants of health such as lack 
of access to health care, lower financial capacity to protect themselves 
against exposure to the hazards, lower awareness of the compound 
hazards, or higher prevalence of comorbidities. On the other hand, 
the effect modification by AC prevalence varies across climate zones, 
with lower synergistic effects observed in communities with higher 
AC prevalence in 10 of 15 California climate zones. The counterintui-
tive positive effect modification by AC in the five climate zones could 
be due to behavior factors or other building infrastructure factors that 
affect infiltration of wildfire smoke or heat insulation (33). For exam-
ple, Eureka and Santa Maria are coastal areas with mild climate and 
low AC prevalences (median of 0% and 11.8%, respectively), and ex-
treme heat days there might have temperatures in the 80° to 90°F 
range, during which people might be less likely to use AC. Such un-
certainties in the effect modification by community characteristics 
emphasized the ecological nature of this study and the importance to 
consider intersectionality of social characteristics at individual level in 
the future. Although uncertainty exists in the mechanism behind 
such vulnerability, updating existing heat action plans to incorporate 
considerations of wildfire smoke could still help mitigate the joint ef-
fects of compound hazards, such as implementing focused education-
al outreaches and establishing clean air and cooling centers near the 
most affected subpopulations.

There are a few limitations in this study that should be explored in 
future research. First, we identified wildfire smoke day using a thresh-
old value for modeled daily wildfire- specific PM2.5 concentrations. 
Since the emission, formation, and evolution of ozone and other pol-
lutants are different from PM2.5 in wildfire smoke (54, 55), the co- 
occurrence of such components might also contribute to the spatial 
heterogeneity of individual effect of wildfire smoke and synergistic 
effects with other climate hazards. Future studies should consider 
such components to better understand their specific effects, but we 
focus on wildfire PM2.5 in this study as it has been shown to be the 
most health relevant component of wildfire smoke. Second, being ex-
posed to ambient air pollution or extreme heat for multiple consecu-
tive days might lead to different health impacts than single- day 
compound exposure (i.e., excess effect from long heat waves or cumu-
lative effect of air pollution) (56, 57), which we did not consider in this 
study due to the limited size of our sample. Third, we focused on acute 
effects of extreme heat and wildfire smoke on unscheduled cardiore-
spiratory hospitalizations, while both hazards could have long- term 
health impacts or less clearly defined health outcomes like increased 
mental stress. Exploring the potential synergistic effects of both haz-
ards on different time scales and mental health outcomes warrants 
future research. Fourth, although we accounted for seasonality and 
confounding from variables that are stable within 2 months by design 
in estimating ZCTA- specific synergistic effects, we could not rule out 
the possibility of residual confounding. However, consistent results 
from different control selections (e.g., yearly matching controlled for 
seasonality in outcomes more stringently than the monthly matching 

in the main analysis) and estimation methods (e.g., Poisson method 
assigned the same weights to all control days) alleviated this concern 
(fig. S9). Fifth, because the amplitude of RERI may be driven by both 
baseline risks and synergistic effects on the additive scale, we focused 
on qualitative interpretation of RERIs based on their direction and 
statistical precision. Future studies could explore other metrics for 
synergistic effects like risk difference due to additive interaction (49). 
Sixth, we were also constrained by aggregated data at ZCTA level and 
therefore can only investigate effect modifications by ZCTA- level 
community characteristics. Last, we assumed isotropy (i.e., same spa-
tial relationships regardless of direction) in the spatial BHM due to 
methodological limitation, which might not hold in data with com-
plex geographies and climates like California. For example, coastal 
marine- layer clouds could modulate extreme heat expression and 
synergistic effects of climate hazards in the coastal area (58). Two 
communities in the coastal area might be more similar in their syner-
gistic effects than two communities of the same distance but located 
in the coastal area and inland area, respectively. However, by using 
relative thresholds for extreme heat, we account for some of these spa-
tial differences by defining these exposure events as extreme days 
based on the temperature distribution at the ZCTA level. Future stud-
ies should aim to develop and apply more flexible spatial methods al-
lowing anisotropy in explorations of climate hazards.

Extreme heat and wildfire smoke are both harmful exposures that 
are increasingly co- occurring in the context of climate change. As the 
number of compound exposure days increases, the synergistic effects 
between extreme heat and wildfire smoke identified in this study will 
become more important for accurate health burden estimation and 
should be incorporated in the development of the hazard warning 
system. For example, a joint warning system could offset the excess 
risk due to the synergistic effect by considering exposure to both cli-
mate hazards and issuing health warnings at lower air pollution levels 
when extreme heat co- occurs. Moreover, we found spatially varying 
synergistic effects between wildfire smoke and extreme heat on 
cardiorespiratory hospitalization and identified vulnerable communi-
ties to such effects in California. This finding highlights the need to 
incorporate environmental justice considerations into evidence- 
based mitigation and adaptation policy development, which could 
guide the siting of clean air and cooling centers and the implementa-
tion of focused educational outreaches.

MATERIALS AND METHODS
Data sources
We explored the synergistic effects of two climate- related hazards, ex-
treme heat and wildfire smoke, in California using the case- crossover 
design and the within- community matched design for observational 
daily time- series data (59–61). We studied California ZCTAs from 
2006 to 2019 that satisfied the following criteria: (i) having a popula-
tion larger than 1000 in the 2010 U.S. decennial census (statistical 
power consideration) and (ii) having at least 1 day in each of the four 
exposure categories (necessary for obtaining ZCTA- specific effect es-
timates and applied in state- level analysis to ensure consistent popula-
tion throughout this study). We chose the ZCTA as the spatial unit for 
analysis because health data were collected at ZIP code level. Since 
ZCTAs are areas created by the U.S. Census Bureau to represent pop-
ulated areas of the ZIP code service routes, we only differentiated 
them when describing the data sources and used ZCTA in the rest of 
the article.
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Health outcome
We identified the ZIP code–specific daily sum of unscheduled hos-
pital visits and emergency department visits (referred to as non- 
prearranged hospitalizations in this article) by cause using the 
Patient Discharge Data and Emergency Department Data collected 
by the California Department of Health Care Access and Infor-
mation (62). The ZIP code is based on the patients’ residential 
address. We defined the cardiorespiratory hospitalization as either 
circulatory or respiratory hospitalization, based on primary diag-
nosis codes (see Supplementary Text for the list of codes included 
to identify the cause- specific hospitalizations). The ethics approval 
of this study was granted by the California Health and Human Ser-
vices Agency’s Committee for the Protection of Human Subjects 
(CPHS) (project number: 2021- 116).
Climate hazards
We identified wildfire smoke ZCTA- days as days in which the daily 
wildfire- specific PM2.5 concentration in the ZCTA is equal to or high-
er than a pre- specific threshold. We explored four threshold values: 
>0 μg/m3, ≥5 μg/m3 [2021 air quality guideline for annual PM2.5 by 
WHO (47)], ≥15 μg/m3 [2021 air quality guideline for 24- hour PM2.5 
by WHO (47)], and ≥35 μg/m3 [National Ambient Air Quality Stan-
dard for 24- hour PM2.5 by U.S. EPA (63)]. Although adverse health 
impacts were observed below such thresholds (64, 65), maintaining 
PM2.5 concentrations lower than these threshold values is considered 
sufficient to protect public health from a regulatory perspective and 
serves as a good starting point to dichotomize the wildfire- specific 
PM2.5. Most local air quality management agencies also issue air qual-
ity warnings or promote “action days” if the standards were exceeded. 
In the main analysis, we will use the ≥15 μg/m3 threshold to define 
the smoke ZCTA- day.

The daily time- series dataset of ZCTA- specific wildfire- specific 
PM2.5 concentration was previously developed (66) and used in 
other epidemiological study (67). Briefly, Aguilera et al. (66) first 
estimated ZCTA- specific daily total PM2.5 concentration from a 
stacked ensemble model using data from U.S. EPA’s Air Quality 
System monitors, aerosol optical depth from NASA satellite mea-
surements, smoke plume observations from the NOAA Hazard 
Mapping System, meteorological variables from the Gridded Me-
teorological (GRIDMET) reanalysis product, and other land- use 
variables from the National Land Cover Database. Next, they im-
puted non- wildfire–specific PM2.5 concentration in ZCTA- days 
with wildfire smoke plume using chained random forest algorithm 
and PM2.5 concentration in ZCTA- days without wildfire smoke 
plume. Last, they calculated wildfire- specific PM2.5 concentration 
as the difference between the generated daily total PM2.5 concen-
tration and non- wildfire–specific PM2.5 concentration in each 
ZCTA. The ensemble model for total PM2.5 concentration had a 
prediction R2 of 0.78 in the hold- out test set (66). Evaluations of 
randomly selected wildfire events also found the modeled wildfire- 
specific PM2.5 concentrations reasonable in intensity and spatial 
distribution (66).

We identified extreme heat ZCTA- days as days in which the daily 
maximum heat index of the ZCTA is higher than a ZCTA- specific 
threshold. Following a modified definition of heat wave day used by 
the U.S. EPA (48), we defined the ZCTA- specific threshold as the 85th 
percentile of the summertime (July and August) daily maximum heat 
index from the year 1980 to the year 2005 in the ZCTA, which cap-
tured unusually hot days in each ZCTA and allowed adaptation and 
acclimation to local climates. In other words, this definition uses the 

local climate norms as reference and emphasizes the influence of cli-
mate change in recent decades by allowing ZCTAs with larger in-
creases in heat index during the study period compared to the 
historical period to have more extreme heat days. We modified the 
EPA’s definition by shortening the historical period from 1980–2010 
to 1980–2005 to exclude years in our study period. When using differ-
ent historical periods (1980–2010 and 1990–2005), the ZCTA- specific 
threshold values correlated well with the threshold value based on 
1980–2005 (Spearman’s correlation coefficients of 0.994 and 0.992) 
and demonstrated similar spatial patterns (fig. S2). Another modifica-
tion is that we used the daily maximum heat index instead of apparent 
temperature as the threshold, which combines maximum absolute 
temperature and minimum relative humidity, proxies biological heat 
stress, and is of higher health relevance than absolute temperature (68, 
69). We obtained daily temperature and humidity from the GRID-
MET reanalysis product at a 4- km resolution and assigned to each 
ZCTA values of the grid into which the ZCTA population- weighted 
centroid falls for the calculation (70). Since most heat index algo-
rithms produce numerically similar results, we choose the National 
Weather Service’s Weather Prediction Center’s adaptation of the 
Rothfusz regression model for heat index calculation (71, 72). To 
avoid implausible threshold values, we also replaced ZCTA- specific 
threshold values higher than 105°F or lower than 80°F with absolute 
cutoff values of 105°F or 80°F to define extreme heat days (46). Details 
and codes of the implementation of this algorithm in Google Earth 
Engine were reported elsewhere (46).

Combining designations of extreme heat ZCTA- day and wildfire 
smoke ZCTA- day, we categorized ZCTA- days within California into 
four types of ZCTA- days: extreme heat alone, wildfire smoke alone, 
compound exposure to both hazards, and no exposure to either haz-
ard (control/unexposed). These exposure categories were used in se-
lecting ZCTAs for the study and in ZCTA- level matched design to 
evaluate spatial heterogeneity in synergistic effects. We summarized 
spatial distribution and the total number for the three types of ex-
posed days.
Community characteristics
To explore the effect modification of spatial heterogeneities in syner-
gistic effects from extreme heat and wildfire smoke by community 
characteristics, we obtained ZCTA level community characteristics 
from the U.S. Decennial Census in 2010 (73) and the Healthy Places 
Index (HPI) report version 3.0 (74, 75). All community characteristics 
were coded in a way that higher values indicate more affluent sub-
populations or better environment except for population density 
and racial/ethnic compositions. Specifically, we included variables for 
race/ethnicity (proportion of non- Hispanic white, non- Hispanic 
Black, non- Hispanic Asian, Hispanic, non- Hispanic American Indian 
or Alaska Native, non- Hispanic Native Hawaiian, or Other Pacific Is-
lander), employment (proportion of employment among those ages 
20 to 64), education attainment (proportion of 25 and older with a 
bachelor degree or higher), health insurance coverage (proportion of 
insured among those aged 18 to 64), income (proportion of the popu-
lation with an income that is greater than 200% of the federal poverty 
level and per capita income in U.S. dollars), population density per 
10,000 population, assets and utilities (percentage of households with 
central AC or access to an automobile), and tree canopy coverage 
(population- weighted percentage of area with tree canopy). Most so-
cioeconomic variables are based on the averages of the American 
Community Survey in 2015–2019 summarized by the HPI, while 
racial/ethnical variables are based on the Decennial Census survey in 
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2010. Details of all data sources are summarized in table  S4. Since 
California has a highly varied climate with drastically different aver-
age temperatures, we also obtained the designation of ZCTAs into 16 
climate zones in California from the Pacific Energy Center for strati-
fied analysis (76).

Although the HPI provided community characteristics at ZCTA 
level, they did not provide details on their crosswalk from the census 
tract (the spatial unit where most survey data were measured) to the 
ZCTA (the spatial unit for our health outcome). As a sensitivity analy-
sis, we calculated the ZCTA level community characteristics manually 
from census tract values except for population density, racial/ethnic 
compositions, and AC prevalence, which were available at ZCTA level 
from other data sources (see table S4). We downloaded the census 
tract–level HPI data for the relevant indicators (75), census tract pop-
ulation sizes from the U.S. Decennial Census in 2010 (73), and the 
HUD crosswalk file (77). Specifically, we calculated the ZCTA- level 
values as weighted averages of census tract–level values. The weight is 
the census tract population within the ZCTA, which was calculated as 
the product of the census tract population and the ratio of the census 
tract addresses that fall within the ZCTA. For automobile ownership, 
we created an ordinal variable with 10 categories based on deciles of 
ZCTA’s automobile ownership percentile among census tracts within 
each ZCTA.

To explore the sensitivity of our results toward the time period 
used on community characteristics, we also used the HPI 2.0 dataset 
(75). The HPI 2.0 dataset is based on averages of the American Com-
munity Survey in 2011–2015 and Decennial Census survey in 2010. 
In analysis using the HPI 2.0 dataset, we used ZCTA- specific racial/
ethnical variables provided instead of obtaining them from the De-
cennial Census survey. Besides, HPI 2.0 dataset lacks a few important 
variables included in HPI 3.0 dataset: per capital income, percentage 
of automobile ownership, and percentage insured.

Statistical analyses
In the main analysis, we used ≥15 μg/m3 daily wildfire- specific PM2.5 
concentration as the threshold for wildfire smoke and 85th percentile 
historical daily maximum heat index as the threshold for extreme heat 
in the definition of hazards.
State- level case- crossover analysis
We first evaluated the synergistic effect of extreme heat and wildfire 
smoke on the risk of daily cardiorespiratory hospitalizations at the 
state level using the time- stratified case- crossover design and the met-
ric RERI. The time- stratified case- crossover design is a widely used 
method in evaluating short- term health impacts of environmental 
hazards, which compared an individual’s exposure in the day with an 
event to the individual’s exposures in the same weekdays in other 
weeks of the month without the event to account for individual- level 
confounding and seasonality, and estimates OR using conditional lo-
gistic regression to account for the matching (78, 79). The OR approx-
imates the ratio of hospitalization risks among those exposed and not 
exposed because hospitalization is rare in the general population and 
an OR larger than one indicates an increase in the risk of hospitaliza-
tion from exposure to environmental hazards. RERI quantifies the 
relative difference between the joint effect of two co- occurring haz-
ards (extreme heat and wildfire smoke) and the sum of individual ef-
fects of the two hazards (49). A positive RERI value indicates an 
increase in risk due to interaction between the two hazards.

Specifically, for each ZCTA- day that had cardiorespiratory hospi-
talizations, we first identified controls as the same weekdays from 

other weeks of the same month and year in the same ZCTA. When 
multiple ZCTA- days in the same weekday of the same month and year 
experienced cardiorespiratory hospitalizations, we would create mul-
tiple matched sets with case as the day when the hospitalization oc-
curred and weight equal to the number of deaths. Next, we applied 
conditional logistic models to estimate the statewide OR for the effect 
of extreme heat alone, wildfire smoke alone, and the combined expo-
sure to both hazards on cardiorespiratory hospitalizations by includ-
ing an interaction term between indicators for either hazard. The 
conditional logistic model accounted for the matching procedure by 
comparing the exposures of each matched case and control set and 
calculating a weighted average across all matched sets. The OR ap-
proximates the effect of the climate hazard (compound or individual) 
on the risk of hospitalization; in other words, an OR larger than one 
indicates a detrimental effect of the climate hazard (compound or in-
dividual) on the risk of hospitalization. Since this study design con-
trols for individual- level covariates such as age, race, and sex, as well 
as time- varying covariates like season (80, 81), we did not include 
covariates other than indicators for the hazards of interest and an in-
teraction term between the two hazards. Effects of individual hazard 
alone (ORH0S1 and ORH1S0) were exponentiated coefficients from the 
conditional logistic model, while the joint effect of both hazards 
(ORH1S1), or effect of compound climate hazards, was calculated as 
the exponentiated sum of three coefficients (two for individual haz-
ards and one for the interaction term) in the conditional logistic 
model. Since assessing interaction on the additive scale has been rec-
ommended as the appropriate scale to inform potential public health 
benefits of hypothetical interventions (49), we evaluated whether a 
synergistic effect exists between extreme wildfire smoke and heat on 
the additive scale using the RERI in our main analysis. We calculated 
the RERI as (ORH1S1 – 1) − (ORH0S1 – 1) − (ORH1S0 – 1), where sub-
script H1 indicates days with extreme heat and S0 indicates days with-
out wildfire smoke. We also assessed interaction on the multiplicative 
scale using the ratio of the OR (exponentiated coefficient for the inter-
action term) as a secondary analysis. We calculated the 95% CIs for 
RERI and the joint effect using the delta method (49). We used the 
“survival” for conditional logistic regression and the “msm” package 
for the delta method (82, 83).
ZCTA- level matched design with spatial BHM
Since the state- level analysis assumed the same effect of extreme heat 
and wildfire smoke (individual, joint, or synergistic) across all ZCTAs 
while spatial heterogeneity might exist, we applied a modified version 
of the previously developed method that uses within- community 
matched design to estimate ZCTA- specific effects and spatial BHM to 
incorporate considerations of spatial autocorrelation (61). We chose 
the within- community matched design for ZCTA- specific estimates 
instead of the time- stratified case- crossover design used for state- level 
estimates because the number of days exposed to compound hazards 
is too low in many ZCTAs to efficiently use the latter (Fig. 1). Since the 
within- community matched design estimates rate ratios and the case- 
crossover design approximates rate ratios with ORs, the effect esti-
mates and RERIs in both designs are comparable when confounding 
is properly controlled.

In the within- community matched design, we quantified the 
ZCTA- specific effects of the climate hazards on cardiorespiratory hos-
pitalizations for each ZCTA separately. For each ZCTA, we first iden-
tified matched controls for three types of exposed days separately 
(extreme heat alone, wildfire smoke alone, and compound exposure 
to both hazards). For each exposed day, controls are days of the same 
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year and ZCTA, not exposed to either hazard and within the window 
of 30 calendar days before or after the exposed day (61). To reduce the 
spillover effect from other exposed days and make the controls more 
representative of non- exposed day, we excluded days within 3 days of 
any exposed days (either extreme heat or wildfire smoke) from the 
potential controls (84, 85). Next, we calculated the rate ratio for each 
exposed day as the ratio of hospitalization counts in the exposed day 
divided by the weighted average of the hospitalization counts in all 
selected control days, with weight equal to the inverse distance to the 
exposed day (i.e., 1/number of days to exposed day). Since this study 
design resembles a matched cohort design, we directly calculated the 
ZCTA- specific rate ratios for extreme heat alone (RRH1S0), wildfire 
smoke alone (RRH0S1), and combined exposure to both hazards 
(RRH1S1) as the average rate ratios from all corresponding pairs of 
matched exposed days and control days in each ZCTA. We used 
the ratio of the hospitalization counts to approximate the rate ratio 
because the population size of a ZCTA is unlikely to change dramati-
cally within 2 months. Last, we calculated the ZCTA- specific synergis-
tic effects, RERI, as (RRH1S1 – 1) − (RRH0S1 – 1) − (RRH1S0 – 1). This 
within- community matched design accounted for potential con-
founding that does not vary remarkably within 2 months by design 
(e.g., population composition regarding sex and age), while giving 
more weight to control days closer to the exposed day in calculation 
reduced the potential influence of seasonal trend. We removed ZC-
TAs from the next- step analysis if the estimation of individual or joint 
effects failed.

Since areas closer together are more likely to be exposed to the 
same wildfire smoke or extreme heat events, we expect the ZCTA- 
specific RERIs to be more similar among closer ZCTAs. To increase 
the precision of our ZCTA- specific estimates, we used a spatial BHM 
to leverage this spatial autocorrelation in our estimates. The theoreti-
cal development of this model was described elsewhere (61). On the 
basis of the empirical semivariogram, we selected the spherical shape 
for the covariance structure and specified starting values of the cova-
riance structure as 2, 0.75, and 2 for sill, nugget, and range, respec-
tively. We also specified the priors as inverse gamma distributions (2 
for shape and 1/starting value for scale) for the sill and nugget, and 
uniform distribution (0.001 to 6) for the range; the tuning parameters 
are 1/20 of the starting values. We used 10,000 Monte Carlo Markov 
chain samples with 75% burn- in to estimate parameters and sample 
weights in the spatial BHM. We recovered sample weights in the 
BHM to obtain pooled ZCTA- specific RERIs, which incorporated in-
formation from spatial autocorrelation into the pre- pooling ZCTA- 
specific RERIs. We also computed the signal- to- noise ratio (SNR) as 
the ratio between the mean of the recovered samples (either for the 
parameters or for the weights) and the corresponding SD of the recov-
ered samples, representing the precision of the estimates. This method 
assumes isotropy (i.e., the same spatial relationship in all directions). 
We used the “spBayes” package in R for the spatial BHM (86).
Effect modification by community characteristics
To evaluate the potential effect modification of community char-
acteristics on the synergistic effect, we ran meta- regressions of the 
pooled ZCTA- specific RERIs on each community characteristic 
selected separately. We reported results as the increase in RERI per 
IQR change in the community characteristics. For AC prevalence, 
we also evaluated the effect modification for each climate zone 
separately because AC prevalence varies dramatically across cli-
mate zones in California (fig. S5A). We conducted meta- regressions 
using the “meta” package (87).

Sensitivity analyses
Since we restricted our study to ZCTAs having at least 1 day in each 
of the four exposure categories to ensure population consistency 
throughout this study, we excluded some ZCTAs that could have 
contributed to the state- level effect estimates. To evaluate the robust-
ness of our state- level estimates toward the inclusion of ZCTAs, we 
conducted the time- stratified case- crossover analysis using all Cali-
fornia ZCTAs (1772) after removing two ZCTAs due to exposure 
data missingness (one for extreme heat and the other for wildfire 
smoke). We also explored seven combinations of hazard definitions 
other than the definition used in the main analysis (threshold of 
>0 μg/m3, ≥5 μg/m3, ≥15 μg/m3, and ≥35 μg/m3 daily wildfire- specific 
PM2.5 concentration for wildfire smoke; threshold of 85th and 95th 
percentiles of historical daily maximum heat index for extreme heat). 
Although it is unlikely that non- wildfire PM2.5 would affect the prob-
ability of experiencing wildfire smoke or extreme heat (50), we might 
have created an association between wildfire PM2.5 and non- wildfire 
PM2.5 through the modeling process. Thus, we conducted sensitivity 
analyses by including non- wildfire PM2.5 in the conditional logistic 
regression to estimate state- level effects in the case- crossover design. 
Last, we conducted the main analyses using the exposure of the pre-
vious day (lag1).

For ZCTA- specific RERIs, we explored three different within- 
community matched designs with varying assumptions (yearly 
weighting, monthly Poisson, and yearly Poisson) other than the 
within- community matched design described in the main analysis 
(monthly Poisson). The first part of the method name describes the 
control identification method, while the second part describes the 
estimation method. Specifically, in the “yearly” methods, we adopted 
the control identification method used by Liu et  al. (84) studying 
wildfire smoke events. We identified matched controls for each ex-
posed day as days of the same ZCTA, not exposed to either hazard 
and within the window of seven calendar days before or after the ex-
posed day in a different year. This control identification method pro-
vides better control for seasonal trends by design than the “monthly” 
method used in the main analysis but might experience more inter- 
year confounding. For “yearly weighting,” the calculation of the rate 
ratio is the same as the main analysis except that the unit for the dis-
tance between matched control and the exposed day is year instead of 
day. We also adopted a different rate ratio calculation method modi-
fied from Liu et al. (84), which takes a random sample of four controls 
from the matched controls of each exposed day and runs a Poisson 
regression of the count of hospitalization on an indicator of exposed 
among all matched pairs in each ZCTA (“Poisson”). Compared to the 
weighting method that gives more weight to days closer to the event, 
the Poisson method treats all matched controls equally. We leveraged 
spatial information into these estimations through the spatial BHM 
while restricting the analyses to ZCTAs that succeeded in all four 
matched designs and had a plausible RERI (<50). We also evaluated 
effect modification by community characteristics for all matched de-
signs explored.

Last, we evaluated the robustness of the combination of our spatial 
BHM and effect modification evaluation method by conducting four 
analyses other than the main analysis: (i) we used ZCTA- level 
community characteristics obtained from the HPI 2.0 dataset in the 
meta- regression, which is mostly based on averages of American 
Community Survey in 2011 to 2015 but has fewer variables and ZCTAs 
with complete data than the HPI 3.0 dataset used in main analysis 
(HPI 2.0); (ii) we converted census tract community characteristics 
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data to ZCTA level using the HUD crosswalk instead of using 
ZCTA- level data directly provided by HPI in meta- regression to 
confirm the robustness toward community characteristic dataset 
(HUD crosswalk); (iii) we ran the spatial BHM using flat priors for 
the sill and nugget to introduce minimal prior information into the 
Bayesian model (inverse gamma distributions with shape and scale 
equal to 0.001) (flat prior); and (iv) we ignored the potential spatial 
autocorrelation and ran linear regressions of ZCTA RERI from the 
within- community matched design and community characteristics 
(non- spatial linear). Because of discrepancy in available variables in 
HPI 2.0 and HPI 3.0 dataset, we did not run effect modification evalu-
ations for per capital income, percentage of automobile ownership, 
and percentage insured in HPI 2.0 analysis.

All analyses were performed in R Studio with R version 4.1.0 (88). 
The R code to replicate these analyses is archived at Zenodo (10.5281/
zenodo.10330291) and is available at the following link: https://github.
com/benmarhnia- lab/synergistic_effect_wildfire_extremeheat_ca.

Supplementary Materials
This PDF file includes:
Supplementary text
Figs. S1 to S10
tables S1 to S5
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